CSE 417: Algorithms and Computational Complexity

Winter 2007 Larry Ruzzo

Divide and Conquer Algorithms

The Divide and Conquer Paradigm

Outline:

General Idea

Review of Merge Sort

Why does it work?

Importance of balance

Importance of super-linear growth

Two interesting applications

Polynomial Multiplication

Matrix Multiplication

Finding & Solving Recurrences

Algorithm Design Techniques

Divide & Conquer

Reduce problem to one or more sub-problems of the same type

Typically, each sub-problem is at most a constant fraction of the size of the original problem

e.g. Mergesort, Binary Search, Strassen's Algorithm, Quicksort (kind of)

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

$$T(n)=2T(n/2)+cn, n\geq 2$$

$$T(I)=0$$

Solution: O(n log n) (details later)

Why Balanced Subdivision?

Alternative "divide & conquer" algorithm:

Sort n-I

Sort last I

Merge them

$$T(n)=T(n-1)+T(1)+3n$$
 for $n \ge 2$
 $T(1)=0$

Solution: $3n + 3(n-1) + 3(n-2) \dots = \Theta(n^2)$

Another D&C Approach

Suppose we've already invented DumbSort, taking time n²

Try Just One Level of divide & conquer:

DumbSort(first n/2 elements)

DumbSort(last n/2 elements)

Merge results

Time: $2 (n/2)^2 + n = n^2/2 + n << n^2$

Almost twice as fast!

D&C in a nutshell

10

Another D&C Approach, cont.

Moral I: "two halves are better than a whole"

Two problems of half size are better than one full-size problem, even given the O(n) overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: "If a little's good, then more's better"

two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").

11

Another D&C Approach, cont.

Moral 3: unbalanced division less good:

$$(.1n)^2 + (.9n)^2 + n = .82n^2 + n$$

The 18% savings compounds significantly if you carry recursion to more levels, actually giving O(nlogn), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.

$$(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n$$

Little improvement here.

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner


```
Closest-Pair(p<sub>1</sub>, ..., p<sub>n</sub>) {
    if(n <= ??) return ??

    Compute separation line L such that half the points are on one side and half on the other side.

    \[ \delta_1 = Closest-Pair(left half) \]
    \[ \delta_2 = Closest-Pair(right half) \]
    \[ \delta = \text{min}(\delta_1, \delta_2) \]

Delete all points further than \delta from separation line L

    \[ \text{Sort remaining points p[1]...p[m] by y-coordinate.} \]

for i = 1..m

k = 1

while i+k <= m && p[i+k].y < p[i].y + \delta \]
    \[ \delta = \text{min}(\delta, \delta \text{distance between p[i] and p[i+k]);} \]

k++;

return \delta.

}
```

Closest Pair Algorithm Basic operations: Base Case distance calcs Closest Fair (P1, ..., P.) { Recursive calls (2) if(n <= 1) return ∞ Compute separation line L such that half the points are on one side and half on the other side. = Closest Pair (left half) 2T(n / 2) δ_2 = Closest-Fair (right half) Delete all points further than & from separation line I Sort remaining points p[1]...p[m] this recursive level for i = 1..mk = 1 while $i+k \le m \le p[i+k].y < p[i].y + \delta$ O(n) $\delta = \min(\delta, \text{ distance between p[i] and p[i+k])};$

Going From Code to Recurrence

Carefully define what you're counting, and write it down!

"Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \ge 1$ "

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)

26

Closest Pair of Points: Analysis

Running time.

$$\mathsf{T}(n) \, \leq \, \left\{ \begin{matrix} 0 & n=1 \\ 2T \big(n/2 \big) \, + \, 7n & n > 1 \end{matrix} \right\} \ \, \Rightarrow \, \mathsf{T}(n) \, = \, O(n \, \log n)$$

BUT - that's only the number of distance calculations

5.5 Integer Multiplication

Closest Pair of Points: Analysis

Running time. $T(n) \leq \begin{cases} 0 & n=1 \\ 2T(n/2) + O(n\log n) & n>1 \end{cases} \Rightarrow T(n) = O(n\log^2 n)$ Q. Can we achieve $O(n\log n)$?

A. Yes. Don't sort points from scratch each time.

• Sort by x at top level only.

• Each recursive call returns δ and list of all points sorted by y

• Sort by merging two pre-sorted lists. $T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n\log n)$

Divide-and-Conquer Multiplication: Warmup To multiply two n-digit integers: Multiply four ½n-digit integers. • Add two $\frac{1}{2}$ n-digit integers, and shift to obtain result. $= 2^{n/2} \cdot x_1 + x_0$ 1 1 0 1 0 1 0 1 y₁ y₀ $= 2^{n/2} \cdot y_1 + y_0$ * 0 1 1 1 1 1 0 1 x₁ x₀ $xy = (2^{n/2} \cdot x_1 + x_0) (2^{n/2} \cdot y_1 + y_0)$ 0 1 0 0 0 0 0 1 ×₀·y₀ $= 2^{n} \cdot x_{1}y_{1} + 2^{n/2} \cdot (x_{1}y_{0} + x_{0}y_{1}) + x_{0}y_{0}$ 10101001 00100011 0 1 0 1 1 0 1 1 $T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$ $x_1 \cdot y_1$ 0110 1000 0000 0001 assumes n is a power of 2

Karatsuba Multiplication

To multiply two n-digit integers:

- Add two ½n digit integers.
- Multiply three ½n-digit integers.
- Add, subtract, and shift $\frac{1}{2}$ n-digit integers to obtain result.

$$\begin{array}{rcl} x & = & 2^{n/2} \cdot x_1 + x_0 \\ y & = & 2^{n/2} \cdot y_1 + y_0 \\ xy & = & 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left(x_1 y_0 + x_0 y_1 \right) + x_0 y_0 \\ & = & 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left((x_1 + x_0) (y_1 + y_0) - x_1 y_1 - x_0 y_0 \right) + x_0 y_0 \\ & A & B & A & C & C \end{array}$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585})$ bit operations.

$$\begin{split} &T(n) \leq \underbrace{T\left(\left \lfloor n/2 \right \rfloor \right) + T\left(\left \lceil n/2 \right \rceil \right) + T\left(1 + \left \lceil n/2 \right \rceil \right)}_{\text{recurve calls}} &+ \underbrace{\Theta(n)}_{\text{add. sobract. shift}} \\ &Sloppy \ version: \ T(n) \leq 3T(n/2) + O(n) \\ &\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \end{split}$$

Multiplication – The Bottom Line

Naïve: $\Theta(n^2)$ $\Theta(n^{1.59...})$ Karatsuba:

Amusing exercise: generalize Karatsuba to do 5 size n/3 subproblems => $\Theta(n^{1.46...})$

Best known: $\Theta(n \log n \log \log n)$

"Fast Fourier Transform"

but mostly unused in practice (unless you need really big

numbers - a billion digits of π , say)

High precision arithmetic IS important for crypto

Recurrences

Where they come from, how to find them (above)

Next: how to solve them

7

39

Mergesort (review)

Mergesort: (recursively) sort 2 half-lists, then merge results.

T(n)=2T(n/2)+cn, n≥2 T(1)=0 Solution: Θ(n log n) (details later)

Merge Sort

Going From Code to Recurrence

Carefully define what you're counting, and write it down!

"Let C(n) be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \ge 1$ "

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)

Solve:
$$T(1) = c$$

$$T(n) = 3 T(n/2) + cn$$

$$\frac{\text{Level} \quad |\text{Num} \quad |\text{Size} \quad |\text{Work} \quad |}{0 \quad |\text{I} = 3^{0} \quad |\text{n} \quad |\text{cn} \quad |}{0 \quad |\text{I} = 3^{3} \quad |\text{n/2} \quad |}{0 \quad |\text{I} \quad |}{0 \quad |}{0 \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |}{0 \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |}{0 \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |}{0 \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |}{0 \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |}{0 \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |\text{I} \quad |}{0 \quad |\text{I} \quad |\text{$$

Solve:
$$T(1) = c$$

 $T(n) = 3 T(n/2) + cn$ (cont.)

$$T(n) = \sum_{i=0}^{k} 3^{i} cn/2^{i}$$

$$= cn \sum_{i=0}^{k} 3^{i}/2^{i}$$

$$= cn \sum_{i=0}^{k} (\frac{3}{2})^{i}$$

$$= cn \frac{(\frac{3}{2})^{k+1} - 1}{(\frac{3}{2}) - 1}$$

$$= \frac{x^{k+1} - 1}{x - 1}$$

$$(x \neq 1)$$

Solve:
$$T(1) = c$$

 $T(n) = 3 T(n/2) + cn$ (cont.)
$$= 2cn \left(\frac{3}{2}\right)^{k+1} - 1$$

$$< 2cn \left(\frac{3}{2}\right)^{k+1}$$

$$= 3cn \left(\frac{3}{2}\right)^{k}$$

$$= 3cn \frac{3^{k}}{2^{k}}$$

Solve:
$$T(1) = c$$

 $T(n) = 3 T(n/2) + cn$ (cont.)
$$= 3cn \frac{3^{\log_2 n}}{2^{\log_2 n}}$$

$$= 3cn \frac{3^{\log_2 n}}{n}$$

$$= 3c 3^{\log_2 n}$$

$$= 3c(n^{\log_2 3})$$

$$= O(n^{1.59...})$$
 $= 0$

Master Divide and Conquer Recurrence

If $T(n) = aT(n/b)+cn^k$ for n > b then

if $a > b^k$ then T(n) is $\Theta(n^{\log_b a})$ [many subproblems => leaves dominate]

if $a < b^k$ then T(n) is $\Theta(n^k)$ [few subproblems =>

top level dominates]

if $a = b^k$ then T(n) is $\Theta(n^k \log n)$ [balanced => all log n levels contribute]

True even if it is $\lceil n/b \rceil$ instead of n/b.

49

D & C Summary

"two halves are better than a whole" if the base algorithm has super-linear complexity.

"If a little's good, then more's better" repeat above, recursively

Analysis: recursion tree or Master Recurrence

51

Another D&C Approach, cont.

Moral 3: unbalanced division less good:

$$(.1n)^2 + (.9n)^2 + n = .82n^2 + n$$

The 18% savings compounds significantly if you carry recursion to more levels, actually giving O(nlogn), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.

In contrast:

$$(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n$$

Little improvement here.